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Abstract

Reliable and efficient damage detection is critical for the use of lightweight materials in the mechan-
ical and aerospace industries. Within the context of Non-Destructive Testing (NDT), vibration-based
tests have been applied for many decades to inspect components without damaging or debilitating
their use. For posterior fault recognition, Artificial Intelligence techniques have achieved high success
for a number of structural applications. In this work, Testing, Simulation and Artificial Intelligence
have been combined in order to develop a defect detection procedure. The use of an Optomet Scanning
Laser Doppler Vibrometer (SLDV) for such tests provides an interesting solution to measure the
vibration velocities on the structure surface. The algorithms for identifying the defects are based on the
Local Defect Resonance (LDR) concept, which looks to the high frequency vibrations to get a localized
resonant activation of the defect. Artificial Intelligence (AI) techniques were implemented with the aim
of creating an automatic procedure combined with feature extraction for damage detection. Wavelet
transformation and modal analysis were used to provide inputs to the AI techniques. In order to better
understand the limitation in terms of defect detection, damaged plates were modelled and simulated in
order to perform a sensitivity analysis. Finally, an overall comparative overview of different algorithms
results was also obtained.
Keywords: Lightweight plates, NDT, Laser Doppler Vibrometry, damage detection, AI

1. Introduction

Early detection of damages, whether in a pro-
duction line or in a structural monitoring context
can prevent significant economic expenses and ma-
jor device malfunctions. The Local Defect Reso-
nance (LDR) concept can be coupled with Non-
Destructive Testing (NDT) techniques to get local-
ized resonant activation of defects, by making use
of high frequency excitations. This concept is based
on the fact that a defect leads to a decrease in stiff-
ness for a certain mass of the material in that area
[1].

Machine Learning (ML) algorithms are feature
classification techniques, that when applied to dam-
age detection, can often achieve state-of-the-art re-
sults with automatic frameworks. In the Deep
Learning (DL) subset of ML, a degree of feature
learning is also offered by these techniques, where
an algorithm learns a transformation or sequence
of transformations of the raw data. Regarding sig-
nal analysis, deep neural networks have been used
as classifiers for damage detection in beam struc-
tures [2], for fault recognition in the condition mon-
itoring of rotating machinery and drivetrains [3][4],

for psychoacoustic analysis [5] and other innovative
non-engineering studies such as electrocardiogram
classification [6]. Moreover, feature extraction tech-
niques have been applied on time-signals to gener-
ate images that can be evaluated by DL algorithms
for similar Structural Health Monitoring (SHM) ap-
plications [7]. Similar studies linking damage detec-
tion with image recognition have been done using
deep neural networks for wind turbine fault classi-
fication ([8]) and autonomous crack detection ([9]).

In this work, within the context of NDT, with the
contactless optical measurement technique Laser
Doppler Vibrometer (LDV), ML and DL algorithms
were developed for damage detection in lightweight
plates. The proposed experimental analysis was
done both in the frequency and time domains,
where these algorithms were developed to analyse
Frequency Response Functions (FRFs), time signals
and also data obtained through feature engineering
with modal analysis, Continuous Wavelet Trans-
form (CWT) and Short-Time Fourier Transform
(STFT). Furthermore, a simulation component was
developed, where some ML algorithms were applied
to data obtained through the simulation of damaged
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plates.

2. Theoretical background
2.1. Local Defect Resonance (LDR)

Local Defect Resonance makes use of high frequency
vibrations to get localized resonant activation of the
defects. This concept is based on the fact that the
inclusion of a defect leads to a decrease in stiffness
for certain mass of the material in that area ([1],
[10]). This phenomenon manifests itself in a partic-
ular natural frequency which can be defined as the
LDR fundamental frequency.

Therefore, this technique implies an extension
of traditional modal analysis frequency regimes to
higher ones. The high frequencies associated with
the localized defect activation provide high contrast
between the defected and sound areas of the com-
ponent [11]. The defects response measured at its
resonance frequency highly surpasses the one ob-
tained at the natural frequencies of the component.
This strong wave interaction causes a strong rise
of local temperature and non-linear behavior in the
frequency band of the defect’s response [12]. This
concept has been used to improve defect localiza-
tion and evaluation through ultrasonic thermogra-
phy and shearography, along vibrometry methods.

2.2. Machine Learning

Machine Learning (ML) is a subset of Artificial In-
telligence (AI) techniques that provides a computer
program the ability to learn and improve from ex-
perience in reference to a specified task [13]. The
practical use of a ML algorithm includes two phases.
In a first phase, the algorithm is trained and in the
second phase, the algorithm is used with predic-
tion purposes. The training involves a set of data
from which the algorithm is going to learn a certain
task and the prediction involves a set of data to be
analysed by the algorithm which will then output a
prediction that ranges from the many purposes to
which a ML algorithm can be applied. Two ML
algorithms were used in this work, the K-means
Clustering and the Multivariate Anomaly Detec-
tion, which will be described below.

2.2.1 K-means Clustering

The K-means Clustering is an unsupervised learn-
ing centroid based clustering algorithm. As unsu-
pervised learning, this method works on an unla-
belled training set, where each training example
contains a certain amount of features but no labels.
As a centroid based clustering algorithm it divides
the training set into K different clusters. There-
fore, the amount of clusters on which the data will
be divided is an input to this algorithm.

Considering a dataset with m unlabelled train-
ing examples {x(1), x(2), ..., x(m)}, where each ex-

ample is a n sized vector of features (x(i) ∈ Rn),
the aim of this algorithm is to aggregate the train-
ing examples into a pre-defined amount of clusters
(µ1, µ2, ..., µK ∈ Rn). This process can be described
in the following steps:

1. Random initialize K cluster centroids;

2. Repeat until all centroid positions remain con-
stant {

(a) Cluster assignment
for i = 1 : m

c(i) := index(from 1 to K ) of cluster
centroid closest to x(i)

(b) Move centroid
for k = 1 : K

µ(k) := average of points assigned to
cluster K

}.

The process of randomly assigning K number of
clusters which are randomly attributed to K train-
ing examples in the starting iteration of the algo-
rithm implies some variability to this algorithm. It
can happen that the clusters are luckily assigned
near a global optima solution, or it can happen that
the clusters are assigned to close points or near a
local optima solution, which will freeze the iterative
process of the algorithm. Therefore, this algorithm
should be run for many random initialization and
the best option should be identified as being the one
which minimizes the cost function value J .

J(c(1), ..., c(m), µ1, ..., µK) =
1

m

m∑
i=1

‖x(i) − µc(i)‖2

(1)

2.2.2 Multivariate Anomaly Detection

The Multivariate Anomaly Detection is a common
type of ML used when the datasets contain an un-
balanced number of examples between each class.
It’s used mainly for unsupervised learning prob-
lems, but contains some aspects of supervised learn-
ing. In situations where there is a considerable
difference of training examples between classes, to
train supervised learning algorithms like neural net-
works, would most likely end in having biased algo-
rithms that make more classifications for the class
with the largest amount of training examples. The
Multivariate Anomaly Detection can overcome this
problem, and is suitable to be applied in such situ-
ations.

This algorithm fits a Multivariate Gaussian dis-
tribution (equation 2) to the training set’s features
(x). After, through a threshold selection process,
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the best threshold is obtained to separate training
examples corresponding to anomalies from training
examples representing common and acceptable val-
ues.

p(x, µ,Σ) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(x−µ)T Σ−1(x−µ))

(2)
Where;

µ = 1
m

m∑
i=1

x(i) : mean vector of
a feature’s
distribution
(µ ∈ Rn).

Σ = 1
m

m∑
i=1

(x(i) − µ)(x(i) − µ)T : covariance
matrix
(Σ ∈ Rn×n).

The steps of the algorithm can thus be enumer-
ated as:

1. Choose features, that might be indicative of
anomalous examples;

2. Fit Multivariate Gaussian Distribution by cal-
culating the mean vector µ and the covariance
matrix Σ;

3. Given a new example x, compute p(x);

4. Identify an anomaly if p(x) < ε.

Where ε represents a constant threshold value from
which an example may be assigned to an anomaly
if its probability value is below this threshold. The
selection of this threshold’s value is usually calcu-
lated from a cross-validation subset of examples,
by calculating which ε provides the most accurate
anomaly predictions.

3. Experimental Analysis
In this section the experimental part of this work
will be described. Several lightweight plate speci-
mens of Carbon-Fiber Reinforced Polymer (CFRP)
and PMMA with Flat Bottom Hole (FBH) defects
were measured. In this section, emphasis will be
given to the results for the PMMA plate. This
lightweight plate contains eight FBH damages in
the bottom surface and was measured looking at
the top surface, where no traces of the defects can
be visualized (Figure 1). Several algorithms will
be presented in this work, which were developed
with ML and DL techniques in order to analyse the
measured data and detect the damages’ location in
the bottom surface of the plate. These algorithms
are divided across a time-domain and frequency-
domain analysis, which will be presented in the next
sub-sections.

(a) Bottom plate
surface with displayed
damages.

(b) Top plate surface
with no damages (the
measured surface).

Figure 1: Measured PMMA plate with 8 damages.

3.1. Experimental Setup

The measurements were performed using an Op-
tomet SWIR Scanning Laser Doppler Vibrometer
(LDV). Figure 1 shows the measured PMMA plate,
which was manufactured by bonding a polystyrene
sheet of 300 x 210 x 0.5 mm3 onto a 5 mm thick
PMMA plate containing square and round holes
of different sizes, using epoxy resin. It was ex-
cited with a piezoelectric patch up to a frequency
of 40 kHz and measured with a grid of 2255
points (55x41) by the LDV. Moreover, an ampli-
fier was used to enhance 50 times the generated
signal by using a Falco Systems WMA-300. From
these measurements, two types of data were ob-
tained: Frequency Response Functions (FRFs) and
time-signals, which are the starting steps for the
frequency-domain and time-domain procedures de-
scribed in this work.

3.2. Frequency-domain Procedures

The frequency-domain procedures are based on the
acquired FRFs. As demonstrated in figure 2, two
algorithms were developed: one Convolutional Neu-
ral Network (CNN) for the direct analysis of the
FRFs; and one ML tool to analyse mode shape data
or the consequent 2nd Derivatives. The algorithm
behind the ML tool is developed by combining the
K-means clustering and Multivariate Anomaly De-
tection, and it was named Gaussian Anomaly De-
tection Automated by Clustering (GADAC).

3.2.1 ML tool (GADAC)

This algorithm links the Local Defect Resonance
(LDR) concept with an unsupervised learning clus-
tering procedure in order to analyse data obtained
from modal analysis performed using the Polymax
tool in Simcenter Testlabr software [14].

This algorithm’s methodology is presented in fig-
ure 3, along with the example of the absolute values
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Figure 2: Frequency-domain algorithm procedure.

of a mode shape (each point relates to the vibra-
tion amplitude of one measured node on the plate).
Whether from the mode shape or its 2nd Deriva-
tives, a complex amplitude vector is the input to
this algorithm. The first step, inspired on the LDR
concept, is to cluster the highest amplitudes with
K-means. A first defect map will be obtained from
the output of this step, where the points whose
amplitudes were assigned to the cluster with high-
est amplitudes will be classified as defected. This
will serve as a reference for the Multivariate Gaus-
sian Anomaly Detection to automatically select a
threshold to classify the defected points based on
their real and imaginary values. After this step, an
improved defect map is obtained in comparison to
the one after the first step.

Figure 3: Frequency-domain ML tool (GADAC)
method.

This procedure is repeated for all the mode
shapes calculated in the 40 kHz frequency band
experimentally measured with the LDV. This mea-
surement was done with a grid of 2255 points
(55x41), hence the mode shape motion is repre-
sented with an equivalent 55x41 grid of points. The
final result of this algorithm will then be the sum

of the algorithm’s classification for each mode shape
or its 2nd Derivatives. The aim of calculating the
2nd Derivatives of the mode shapes is to highlight
the defect’s presence in a mode shape (φ) making
it easier to detect.

d2φ

dx2
;
d2φ

dy2
;
d2φ

dxdy

Figure 4 displays both the result for the applica-
tion of this frequency-domain ML tool to the mode
shapes (left) and to the 2nd Derivatives of the mode
shapes (right). The plate measured in this study
(figure 1) contains 8 damages, from which 6 were
correctly detected in both these results, by observ-
ing the amount of positive defect classifications on
the 3 bigger circular and squared plate defects.
Moreover, some nodes were classified as damaged
on the bottom left part of the defect maps. These
are relevant to the location of where the piezoelec-
tric patch was attached to the plate when making
these measurements.

(a) mode shapes. (b) 2nd Derivatives.

Figure 4: Frequency-domain ML tool results.

3.2.2 1D CNN

A 1D Convolutional Neural Network (CNN) was
developed to analyse the Frequency Response Func-
tions (FRFs) containing the relation from the out-
put vibration velocity and the input piezo patch’s
excitation force. The aim is to extract complex
features from the FRFs with the CNN and clas-
sify whether they were measured on top of dam-
aged or undamaged nodes. The LDV measures the
plate’s response to an excitation band of 40 kHz,
therefore, in order to have a meaningful number of
spectral lines for the FRF calculation, these end up
being a vector containing a significant amount of
points (around 7k for these measurements). It is
impractical to design a 1D CNN to properly per-
form feature extraction and recognition from the
analysis of the entire FRF taken as a single in-
put. Thus, a pre-processing step was implemented
to segment the signal into smaller equally sized seg-
ments. Moreover, this segmentation operation was
performed with a certain overlap of one segment to
another. This resulted in a data augmentation tech-
nique which enhances the amount of data to train
the algorithm, which is crucial for DL applications.
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Figure 5 illustrates the steps of implementing the
developed algorithm, where the pre-processing con-
tains precisely the two operations described above:
segmentation and overlap. Moreover, it shows an
example of a measured FRF.

Figure 5: Frequency-domain 1D CNN method.

The architecture of the 1D CNN was designed
with a manual procedure to optimize the number of
layers and their parameters. The kernel sizes and
number of convolutional pooling blocks was stud-
ied taking into reference the accuracy of the ob-
tained results. The chosen architecture is made of 5
convolutional, batch normalization, ReLU, pooling
layer blocks, followed by one fully connected (200
neurons) and dropout layer, ending with a softmax
layer. The convolutional layers’ kernel sizes were
defined with 3 neurons, except for the first which
had 61. This choice of a wide first-kernel was made
to better suppress the high frequency noise.

Contrary to the previously presented ML tool,
which is an unsupervised learning algorithm, the
1D CNN is supervised learning. Hence, to train
this algorithm there is the need for labels, which
is a hard task, since it is very difficult to have the
ground-truth on which LDV measured nodes are
on top of defects or otherwise. The plate is mea-
sured on the top surface, which is a clean undam-
aged surface, with no regards whatsoever for where
the 2255 measured node grid is, in relation to the
damages on the bottom surface. Therefore, for this
and the other supervised learning algorithms used
in this work (the CNNs), fifty percent of the clas-
sification labels obtained from the results with the
time-domain ML tool (sub-section 3.3.1) were con-
sidered to train the algorithm (figure 9 a)). Hence,
a ML algorithm is used to train another and enable
continuing the proposed investigation, for this case
in which obtaining the ground-truth labels is so far
deemed impractical.

The classification results on the LDV measure-
ment done with a 2255 node grid (55x41) is shown
in figure 6, where the classification of nine groups of
yellow points is achieved. These points are the ones

Figure 6: Frequency-domain 1D CNN results.

detected as damaged, whereas all points in blue are
detected as non-damaged. Considering the PMMA
plate has 8 defects, the image shows the defect
map obtained with this algorithm where an accu-
rate classification of 7 out of 8 damages is achieved.
The group of points in the bottom left corner of
the map corresponds to the detection of the piezo-
electric patch’s location, where the excitation was
provided to the plate. However, there is a ninth de-
fect detected in the middle of the plate to the left,
which corresponds to a misclassification. All in all,
the smaller circular defect wasn’t detected.

3.3. Time-domain Procedures

The time-domain procedures originate from the
analysis of the time-signals measured with the LDV,
which record the vibration velocity for each mea-
sured point during the excitation period. As shown
in figure 7, three algorithms were developed: two
with Convolutional Neural Networks (CNNs), with
1D and 2D inputs (time-signal vectors and CWT
or STFT images, respectively); and one with the
ML K-means clustering tool. A pre-processing
step was done in MATLAB with the Continuous
Wavelet Transform (CWT) and with the Short-
Time Fourier Transform (STFT). These two time-
frequency transformations provide an analysis of
the time-varying spectral characteristics, useful for
detecting defected node’s measurements. Since the
vibration of a defected node will be different than
that of a non-defected node, both CWT and STFT
can capture this phenomenon, thus being optimal
feature extraction techniques for ML applications.
They were used to extract time-frequency image
representations (input to the 2D CNN), and also
to calculate the maximum vibration amplitude per
measured point by the LDV (input to the ML
tool K-means). In this subsection, these algorithm
methodologies will be briefly explained and their
results presented.

3.3.1 ML tool (K-means)

By applying the CWT or the STFT to the signals,
the maximum amplitude of vibration for each mea-
sured point can be obtained. Hence, the output
from both transformations (as shown in figure 7)
is a vector of amplitudes, with as many points as
there were measured nodes (2255 as referenced in
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Figure 7: Time-domain algorithm procedure.

sub-section 3.1). According to the LDR concept,
the highest amplitudes will be relevant to the dam-
aged points on the plate. This algorithm clusters
the amplitudes from the vector in two clusters of
points. The one with the highest amplitudes will
be classified as containing the damaged nodes of
the plate. This methodology is illustrated in fig-
ure 8, along with an example representation of the
obtained vector of points from either the CWT or
STFT. Additionally to the K-means clustering step,
there was implemented a filter to remove the defects
detected with one single node, which correspond to
outliers likely resultant from measured points with
low signal-to-noise ratio, by the LDV. Thus, this
algorithm has a resolution of two nodes per defect.

Figure 8: Time-domain ML tool (K-means)
method.

Figure 9 displays this algorithm’s results for both
the CWT and STFT input max amplitude vec-
tors. Both defect maps have a binary classification
where the nodes in yellow correspond to the de-
fected nodes and the blue to the non-defected. The
PMMA measured plate (figure 1) contains 8 defects,
hence the optimal result would be detecting eight
groups of yellow points in the regions where the de-
fect are located in the plate. Both these algorithm’s
classifications, represented in figure 9, allow to de-
tect 5 damages, the three biggest squared and two
biggest circular ones.

(a) CWT. (b) STFT.

Figure 9: Time-domain ML tool results.

3.3.2 2D CNN

Alternatively to calculating the maximum vibration
amplitudes, the application of both transformations
was used to generate time-frequency image repre-
sentations of each transformation applied to each
time-signal. The transformations were saved as
Red Green Blue (RGB) images, one per each time-
signal, hence one per each measured node. Figure
10 shows two examples of these images: to the left,
the frequency-time representation of the Continu-
ous Wavelet Transform (CWT); to the right, the
time-frequency representation of the Short-Time
Fourier Transform (STFT). In both images, a line in
brighter color, which corresponds to the sine-sweep
used as excitation to the PMMA plate up to 40 kHz
can be highlighted. This algorithm analyses each of
these images with a 2D CNN and classifies whether
the signal is measured on top of damaged nodes
or otherwise (binary classification). Moreover, the
same outlier filter methodology applied in the algo-
rithm previously described (sub-section 3.3.1) was
applied to this algorithm. In this way, defects de-
tected with just one node are attributed to outliers
and discarded (this algorithm also has a two dam-
aged nodes per defect resolution).

Figure 10: Time-domain 2D CNN method.

A previously developed CNN architecture was
used and trained to this damage detection purpose
the GoogLeNet [15]. In order to train it, fifty per-
cent of the labels from the 5 defects map result (fig-
ure 9 a)) obtained with the ML tool for the CWT
max amplitudes (sub-section 3.3.1) were used. The
results from the 2D CNN are presented in figure 11.

This algorithm detected 6 out of the 8 defects in
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the PMMA plate (figure 1), plus the piezo patch’s
location (bottom left corner), for both the CWT
and STFT images. Only the two smaller circu-
lar defects were left undetected. Whereas the 2D
CNN’s classification for the STFT images only clas-
sifies the existing damages and the excitation’s lo-
cation, the classification for the CWT images pro-
vided some misclassifications. Above the piezo
patch’s location, there were detected some damaged
nodes where in fact there are none, and the same for
a misclassification on top of the smaller circular de-
fect detected. Hence, it can be concluded that the
STFT images provide a more reliable dataset to be
classified with a 2D CNN for the damage detection
purpose.

(a) CWT. (b) STFT.

Figure 11: Time-domain 2D CNN results.

3.3.3 1D CNN

Similarly to the developed methodology for the fre-
quency domain procedure, explained previously in
the sub-section 3.2.2, a 1D Convolutional Neural
Network (CNN) was developed to analyse the one-
dimensional time-signal vectors containing the vi-
bration time history of each measured node. The
LDV measures these signals with a high-frequency
sampling rate (to cope with the high-frequency dy-
namic behaviour), hence the signals obtained con-
tain almost 12k samples. Therefore, the same
pre-processing step described in sub-section 3.2.2
was applied to this algorithm, in order to trun-
cate the time-signal vectors into equally sized seg-
ments, with a certain overlap. The overlap oper-
ation, with which the segmenting is performed, is
a data augmentation procedure, which contributes
to the training of this algorithm. Figure 12 shows
this algorithm’s methodology and an example of a
measured time-signal. The aim will be to classify
whether these were measured on top of a damaged
node or otherwise.

In terms of architecture, the same used for the
analysis of the FRFs was used in this case (de-
scribed in sub-section 3.2.2) and to train it, equally
fifty percent of the labels obtained from the ML tool
results on the CWT max amplitudes (figure 9 a)).
Its classification result on the same measurement as
all the previously presented algorithms is shown in
figure 13, where the accurate classification of 7 out

Figure 12: Time-domain 1D CNN method.

of the 8 damages in the PMMA plate is achieved,
plus the location of the piezoelectric patch. The
smallest circular defect was left undetected equally
to the results from the previous algorithms.

Figure 13: Time-domain 1D CNN results.

3.4. Match of all techniques
In the experimental analysis section, several algo-
rithms were presented for both frequency-domain
and time-domain data. The results for each algo-
rithm were presented on a single dataset obtained
from one measurement of the PMMA plate with the
LDV. A comparison of the algorithm’s performance
and accuracy of detection on the same dataset are
presented in table 1 and will be commented in this
sub-section.

Table 1 shows that either considering the CWT
and STFT data for the ML tool and 2D CNN al-
gorithms, the accurate number of defects detected
is the same (5 defects for the ML tool and 6 de-
fects for the 2D CNN). However, as previously com-
mented in sub-section 3.3.2, the classification for
the CWT images with the 2D CNN provided some
misclassifications which didn’t occur for the STFT
image classification. Comparing the results from
the time-domain ML tools to the frequency-domain
ML tools, the detection of one more defect (the sec-
ond smallest circular defect) was obtained.

Passing from ML to the DL algorithms, an en-
hancement of defects detected can be highlighted.
The algorithms which provided the best classifi-
cation results were the 1D CNNs, which detected
7 defects (plus the location of the piezoelectric
patch’s excitation) both for the analysis of the time-
signals and Frequency Response Functions (FRFs).
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However, for the frequency-domain 1D CNN, one
misclassification was outputted by the algorithm,
which didn’t happen for the time-domain. All in
all, only the smallest (circular) defect was left un-
detected, in the PMMA plate with 8 defects.

Table 1: Sum-up of the algorithms’ results

Time-Domain Frequency-Domain
Method Results Method Results
ML tool
- CWT

5 defects ML tool 6 defects

ML tool
- STFT

5 defects

2D CNN
- CWT

6 defects
ML tool
- 2nd Grad

6 defects

2D CNN
- STFT

6 defects

1D CNN 7 defects 1D CNN 7 defects

4. Simulation Analysis
Secondly to developing an experimental analysis, a
simulation analysis was created in order to study
the potentialities of certain algorithms to data ob-
tained through Finite Element Analysis (FEA).
Similarly to the modal analysis experimental pro-
cedure in figure 2, the mode shapes of the modelled
damaged plate were calculated (Figure 14). A sim-
ilar ML tool methodology to the one presented for
the analysis of the experimental mode shapes and
their 2nd Derivatives was developed using the K-
means algorithm. The reason behind not applying
the ML tool (GADAC), similarly to the experimen-
tal analysis, lies in the fact that mode shapes calcu-
lated through FEA are represented by real and not
complex numbers.

Figure 14: Simulation analysis algorithm method-
ology.

4.1. Simulation Setup
The FEA was performed using Siemens Simcenter
3Dr software, to obtain the mode shape displace-
ment for several modes in a frequency interval be-
tween 0 and 40 kHz. The choice of such a high
frequency band goes in agreement with the LDR
concept, in order to obtain the vibration behaviour
for high frequency modes, which are dominated by
the defected region vibration. Considering the Fi-
nite Element (FE) model, a squared plate was cre-
ated (120x120 mm) with two squared defects (side
of 20 and 10 mm) and two circular defects (diame-
ter of 20 and 10 mm), as shown in Figure 15. The
defects themselves were simulated as Flat Bottom
Holes (FBHs), by accordingly reducing the thick-
ness of the plate in the defects’ areas. In order to
obtain the mode shapes, the SOL 103 - Real Eigen-
values was used with free-free boundary conditions.
An example of a LDR mode can be seen in Figure
15, and distinguished by the high localized vibration
amplitude in one of the defect’s locations. Within
the 40 kHz frequency band from which the mode
shapes were calculated, more than 400 mode shapes
were obtained with a fine mesh.

Figure 15: Modelled plate and a Local Defect Res-
onance mode obtained with FEA

4.2. ML tool
The working principles of this algorithm are linked
to the LDR concept, since K-means is implemented
to cluster the highest vibration amplitudes from the
mode shapes in order to relate them to the damaged
points. Each mode shape is characterized by a vec-
tor of points (represented in figure 16), where each
point is equivalent to the vibration displacement in
a specific node of the plate. The highest amplitudes
will be related to the damage’s vibration, hence re-
lating the points clustered with the highest ampli-
tudes to being defected will provide the insights for
the localization of the damages in the plate. The
methodology described here is shown in figure 16,
where K-means runs with three clusters. Thus aim-
ing to have one cluster for the points with close to
zero amplitude, one for the low amplitudes related
to lower vibration in healthy parts of the plate and
a last cluster to obtain the points with the high-
est amplitude which will be related to the damage
vibration.

For one of the methodologies, a 2nd Derivatives
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Figure 16: Machine Learning tool method.

step was implemented previously to the clustering
procedure, aiming to enhance the influence of the
defect in a mode shape, making it easier to detect
(figure 14). The results of this application can be
seen in Figure 17, where a mode shape is compared
with its corresponding result after the 2nd Deriva-
tive. It can be seen that, from a high frequency
mode shape of combined plate and defect vibration,
the results after the 2nd Derivatives highlight the
four defects, making them more easily detectable.

Figure 17: Influence of the 2nd Derivatives on a
mode shape

Figure 18 shows the results obtained with the ML
tool (K-means), on both the mode shapes and its
2nd Derivatives obtained for a plate with 30% of
thickness in the defected areas. This algorithm runs
independently for each mode shape or consequent
2nd Derivatives, and the final result is a sum of all
single outputs. Not only were the four defects de-
tected, but also important considerations regarding
their shape managed to be retrieved.

(a) Mode shapes. (b) 2nd Derivatives.

Figure 18: Machine Learning tools’ results.

5. Conclusions

In this work, Machine Learning and Deep Learn-
ing techniques were implemented to perform dam-
age detection in lightweight plates. Some of these
techniques were combined with feature extraction
engineering with modal analysis and time-frequency
transformations. Furthermore, the physical concept
of Local Defect Resonance was combined with the
algorithms to build an enhanced damage detection
methodology. In the experimental analysis, a broad
study of different time and frequency domain pro-
cedures was developed, from which the success of
implementing ML and DL techniques for damage
detection can be concluded. Comparing all tech-
niques, the 1D CNNs provided the best damage
detection results. All in all, the developed algo-
rithms managed to detect almost all damages. The
simulation analysis further presented in this work
allowed to study the performance of the ML tool
(K-means) on data obtained with Finite Element
Analysis. The algorithm not only managed to de-
tect the damages, but also captures important con-
siderations of their shapes.
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